Vis RSS feed
HJEM    Søk    Logg Inn               
Per Hovedsiden :: Søk i Per :: Alfabetisk Liste :: Topp 20 :: Per Hjelp 
Logo: Databasen Per

Emnet ble sist oppdatert 2004-01-06 18:32:33

Relaterte oppslag:

derivasjonsregler
deriverbar
grenseverdi
integral
integrasjon
invers operasjon

Nettressurser:

Kommentarer?

cosinus@matematikk.net

Per Oppslag

derivert

Den deriverte av en funksjon beskriver hastigheten funksjonene forandrer seg med, med hensyn på en uavhengig variabel. Den deriverte er også stigningen til tangenten av kurven. La oss anta at vi har funksjonen f(x) i et koordinatsystem. Vi velger et punkt x på førsteaksen. Tilhørende funksjonsverdi er f(x). La oss tenke oss at vi beveger oss et lite stykke bortover på førsteaksen fra x. Denne avstanden kaller vi ∆x. Dette nye punktet på førsteaksen heter da x+∆x. Funksjonsverdien til dette punktet blir f(x+∆x). Dette kan se slik ut:

Om vi så tenker oss at størrelsen på ∆x går mot null har vi følgende:


Den deriverte av f(x) skrives f '(x) og er gitt ved uttrykket over. Vi se at stigningstallet til sekanten vil nærme seg stigningstallet til grafens tangent i x, når ∆x går mot null.

Sidene utvikles og drives av enheten:
© 2000- 2020 Sivilingeniør Kenneth Marthinsen, org. no: 976 773 934.
Telefon 932 99 111 Postadr. Odvar Solbergs vei 112, 0973 OSLO
MAIL OSS